A cell in spinach uses sunlight produce electricity: research

A cell in spinach uses sunlight to produce electricity: research

11:04 AM, 22nd September 2016
A cell in spinach uses sunlight to produce electricity: research
The BPEC cell developed by the researchers is based on the naturally occurring process of photosynthesis in plants, in which light drives electrons that produce storable chemical energetic molecules, that are the fuels of all cells in the animal and plant worlds.

HAIFA, ISRAEL: Using a simple membrane extract from spinach leaves, researchers from the Technion-Israel Institute of Technology have developed a bio-photo-electro-chemical (BPEC) cell that produces electricity and hydrogen from water using sunlight. The raw material of the device is water, and its products are electric current, hydrogen and oxygen.

The findings were published online in the journal Nature Communications.

The unique combination of a man-made BPEC cell and plant membranes, which absorb sunlight and convert it into a flow of electrons highly efficiently, paves the way for the development of new technologies for the creation of clean fuels from renewable sources: water and solar energy.

The BPEC cell developed by the researchers is based on the naturally occurring process of photosynthesis in plants, in which light drives electrons that produce storable chemical energetic molecules, that are the fuels of all cells in the animal and plant worlds.

In order to utilise photosynthesis for producing electric current, the researchers added an iron-based compound to the solution. This compound mediates the transfer of electrons from the biological membranes to the electrical circuit, enabling the creation of an electric current in the cell.

The electrical current can also be channelled to form hydrogen gas through the addition of electric power from a small photovoltaic cell that absorbs the excess light. This makes possible the conversion of solar energy into chemical energy that is stored as hydrogen gas formed inside the BPEC cell. This energy can be converted when necessary into heat and electricity by burning the hydrogen, in the same way hydrocarbon fuels are used.

However, unlike the combustion of hydrocarbon fuels – which emit greenhouse gases (carbon dioxide) into the atmosphere and pollute the environment – the product of hydrogen combustion is clean water. Therefore, this is a closed cycle that begins with water and ends with water, allowing the conversion and storage of solar energy in hydrogen gas, which could be a clean and sustainable substitute for hydrocarbon fuel.

The study was conducted by doctoral students Roy I Pinhassi, Dan Kallmann and Gadiel Saper, under the guidance of prof Noam Adir of the Schulich faculty of chemistry, prof Gadi Schuster of the faculty of biology and prof Avner Rothschild of the faculty of material science and engineering.

“The study is unique in that it combines leading experts from three different faculties, namely three disciplines: biology, chemistry and materials engineering,” said Rothschild. “The combination of natural (leaves) and artificial (photovoltaic cell and electronic components), and the need to make these components communicate with each other are complex engineering challenges that required us to join forces.”

It was funded by the I-CORE (Israeli Centers of Research Excellence) program, the National Science Foundation, a special grant from the US – Israel Binational Science Foundation (BSF) and the German-Israeli Project Cooperation Program (DIP).

© Technion-Israel Institute of Technology News

0 Comments

Login

Your Comments (Up to 2000 characters)
Please respect our community and the integrity of its participants. WOC reserves the right to moderate and approve your comment.

Related News


Small molecules lead to major change in reaction outcomes

NEW HAVEN, US: Yale University scientists have found a way to re-wire the behavior of an important group of small molecules involved in the synthesis ...

Read more
Borealis plans world-scale PDH plant in Belgium

VIENNA, AUSTRIA: Borealis AG said that it plans to study the feasibility of a new, world-scale propane dehydrogenation (PDH) plant. The plant would be ...

Read more
Praxair acquires CO2 purification plant in US

DANBURY, US: Praxair Inc said that it has acquired and operate a 300 tonnes per day carbon dioxide (CO2) purification and liquefaction plant from Pure ...

Read more
BioAmber achieves important milestone in loan guarantee process

MINNEAPOLIS, US: BioAmber Inc said that it has achieved an important milestone in its application for a $360 million loan guarantee from the US Depart ...

Read more
New polymers for hygiene and assembly hot melt adhesives

IRVING, US: ExxonMobil Chemical Company has introduced new grades of low viscosity Vistamaxx performance polymers for hygiene and assembly hot melt ad ...

Read more
Unearthing rare earth metals with precious chemicals

Deteriorating quality and quantity of mineral deposits is failing to keep up with the rising demand for minerals and ores across the globe. To maintai ...

Read more