Vienna University researchers built tiny sensor test liquids chemical composition

Newly developed sensor to test chemical composition of liquids

11:42 AM, 16th June 2014
Vienna University researchers built tiny sensor can test liquids chemical composition
Just a drop is enough to test the chemical composition.

VIENNA, AUSTRIA: Researchers at Vienna University of Technology have built a tiny sensor using miniaturized laser technology, which can test the chemical composition of liquids.

They are invisible, but perfectly suited for analysing liquids and gases; infrared laser beams are absorbed differently by different molecules. This effect can for instance be used to measure the oxygen concentration in blood. At the Vienna University of Technology, this technique has now been miniaturized and implemented in the prototype for a new kind of sensor.

Specially designed quantum cascade lasers and light detectors are created by the same production process. The gap between laser and detector is only 50 micrometre. It is bridged by a plasmonic waveguide made of gold and silicon nitride. This new approach allows for the simple and cheap production of tiny sensors for many different applications.

Simple solid-state lasers, such as the well-known red ruby laser, consist of only one material. Quantum cascade lasers, on the other hand, are made of a perfectly optimized layer system of different materials. That way, the properties such as the wavelength of the laser can be tuned. When a voltage is applied to the layer structure, the laser starts to emit light. But the structure can also work the other way around; when it is irradiated with light, an electric signal is created.

Now a method has been developed to create a laser and a detector at the same time, on one single chip, in such a way that the wavelength of the laser perfectly matches the wavelength to which the detector is sensitive. This bifunctional material was created atomic layer for atomic layer at the center for micro- and nanostructures at the Vienna University of Technology. “As both parts are created in one step, laser and detector do not have to be adjusted. They are already perfectly aligned,” said Benedikt Schwarz, Vienna University of Technology.

In conventional systems, the laser light has to be transmitted to the detector using carefully placed lenses. Alternatively, optical fibres can be used, but they usually transport all the light inside, without letting it interact with the environment, and therefore they cannot be used as sensors.

In the new element created at the Vienna University of Technology, the optical connection between quantum cascade laser and detector works in a completely different way. It is a plasmonic waveguide, made of gold and silicon nitride. “The light interacts with the electrons in the metal in a very special way, so that the light is guided outside the gold surface. That is why the light can be absorbed by the molecules on its way between laser and detector,” said Benedikt Schwarz.

The sensor chip can be submerged in a liquid. By measuring the decrease of the detected light intensity due to the presence of light absorbing molecules, the composition of the liquid can be determined. The sensor was tested with a mixture of water and alcohol. The water concentration can be measured with an accuracy of 0.06 per cent.

As the wavelength can be influenced by changing the design of the layered structure, this sensor concept can be applied to a wide variety of molecules such as carbohydrates or proteins, for many different applications in chemical, biological or medical analytics.

 

© Vienna University of Technology News

0 Comments

Login

Your Comments (Up to 2000 characters)
Please respect our community and the integrity of its participants. WOC reserves the right to moderate and approve your comment.

Related News


Towards new quantum technology from defects in diamond

WASHINGTON DC, US: New research shows that a remarkable defect in synthetic diamond produced by chemical vapor deposition allows researchers to measur ...

Read more
Uralkali acquires 25 pc stake in port terminal in Brazil

MOSCOW, RUSSIA/ANTONINA, BRAZIL: Uralkali, world’s largest potash producer, has acquired 25 per cent in Equiplan Participacoes SA, which is the ...

Read more
Mitsui announces restructuring plan, closes few production facilities

TOKYO, JAPAN: Japanese chemical major Mitsui Chemicals Inc has announced a major restructuring plan, which involves closing down of some production fa ...

Read more
Diamond sheet may be obtained without pressure

HOUSTON, US: Perfect sheets of diamond a few atoms thick appear to be possible even without the big squeeze that makes natural gems. Scientists call t ...

Read more
New promising approach to targeted drug delivery

WASHINGTON DC, US: Many of today’s therapeutic drugs cause potential side effects. These effects often occur when a drug is active throughout th ...

Read more
Linde to supply hydrogen to Nynas’ refinery in Hamburg, Germany

MUNICH, GERMANY: The Linde Group has signed a long-term contract with Nynas AB, one of the world leaders in the naphthenic specialty oils (NSP) and th ...

Read more