Michigan University Biophysics researchers building efficient energy storage system

Study of mechanics of photosynthesis promises efficient energy storage system

12:01 PM, 14th July 2014
Michigan University Biophysics researchers building efficient energy storage system
Sunlight illuminates the photosystem II reaction center, initiating the primary events of oxygenic photosynthesis on an ultrafast timescale.

ANN ARBOR, US: Biophysics researchers at the University of Michigan have used short pulses of light to peer into the mechanics of photosynthesis and illuminate the role that molecule vibrations play in the energy conversion process that powers life on our planet. The findings could potentially help engineers make more efficient solar cells and energy storage systems. They also inject new evidence into an ongoing ‘quantum biology’ debate over exactly how photosynthesis manages to be so efficient.

Through photosynthesis, plants and some bacteria turn sunlight, water and carbon dioxide into food for themselves and oxygen for animals to breathe. It’s perhaps the most important biochemical process on Earth and scientists don’t yet fully understand how it works.

The findings identify specific molecular vibrations that help enable charge separation - the process of kicking electrons free from atoms in the initial steps of photosynthesis that ultimately converts solar energy into chemical energy for plants to grow and thrive.

“Both biological and artificial photosynthetic systems take absorbed light and convert it to charge separation. In the case of natural photosynthesis, that charge separation leads to biochemical energy. In artificial systems, we want to take that charge separation and use it to generate electricity or some other useable energy source such as biofuels,” said Jennifer Ogilvie, Associate Professor, University of Michigan.

It takes about one-third of a second to blink your eye. Charge separation happens in roughly one-hundredth of a billionth of that amount of time. Ogilvie and her research group developed an ultrafast laser pulse experiment that can match the speed of these reactions. By using carefully timed sequences of ultrashort laser pulses, Ogilvie and coworkers were able to initiate photosynthesis and then take snapshots of the process in real time.

The researchers worked with Charles Yocum, Professor, University of Michigan extracted what’s called the photosystem II reaction centers from the leaves. Located in the chloroplasts of plant cells, photosystem II is the group of proteins and pigments that does the photosynthetic heavy lifting. It’s also the only known natural enzyme that uses solar energy to split water into hydrogen and oxygen.

To get a sample, the researchers bought a bag of spinach leaves from a grocery store. “We removed the stems and veins, put it in the blender and then performed several extraction steps to gently remove the protein complexes from the membrane while keeping them intact. This particular system is of great interest to people because the charge separation process happens extremely efficiently. In artificial materials, we have lots of great light absorbers and systems that can create charge separation, but it’s hard to maintain that separation long enough to extract it to do useful work. In the photosystem II reaction center, that problem is nicely solved,” added Ogilvie.

The researchers used their unique spectroscopic approach to excite the photosystem II complexes and examine the signals that were produced. In this way, they gained insights about the pathways that energy and charge take in the leaves.

“We can carefully track what’s happening. We can look at where the energy is transferring and when the charge separation has occurred,” said Ogilvie.

The spectroscopic signals they recorded contained long-lasting echoes, of sorts, that revealed specific vibrational motions that occurred during charge separation.

“What we’ve found is that when the gaps in energy level are close to vibrational frequencies, you can have enhanced charge separation. It’s a bit like a bucket-brigade: how much water you transport down the line of people depends on each person getting the right timing and the right motion to maximize the throughput. Our experiments have told us about the important timing and motions that are used to separate charge in the photosystem II reaction center,” said Ogilvie.

She envisions using this information to reverse engineer the process - to design materials that have appropriate vibrational and electronic structure to mimic this highly efficient charge separation process.

© University of Michigan News

0 Comments

Login

Your Comments (Up to 2000 characters)
Please respect our community and the integrity of its participants. WOC reserves the right to moderate and approve your comment.

Related News


BP, CNOOC sign LNG supply agreement

BEIJING, CHINA: China National Offshore Oil Corporation (CNOOC) has signed a 20-year deal with London-based oil giant BP for liquefied natural gas (LN ...

Read more
Saint-Gobain to acquire Phoenix Coating Resources

FLORIDA, US: Saint-Gobain has finalized the acquisition of Phoenix Coating Resources Inc, a company based in Mulberry, Florida, US that manufactures c ...

Read more
Yara to acquire stake in Borealis’ urea plant in Le Havre, France

OSLO, NORWAY: Yara has accepted an offer from Borealis to acquire Borealis’ ownership in urea plant located in Le Havre, situated on the north-w ...

Read more
Lubrizol to expand surfactant plant in Rio de Janeiro, Brazil

CLEVELAND, US: The Lubrizol Corporation announces the groundbreaking of a major surfactant plant expansion in Rio de Janeiro, Brazil. Strategically lo ...

Read more
Sika acquires Klebag Chemie in Switzerland

BAAR, SWITZERLAND: Sika is acquiring the business of Klebag Chemie AG, a manufacturer of adhesives for the sealing, bonding and flooring markets. The ...

Read more
“Smart” cup have a check on calorie intake

SAN FRANCISCO, US: A newly developed cup, called the smart cup, can keep tab of the calories that we consume and send an alert when we have enough alc ...

Read more