European Nuclear Research Organisation Cern produced antihydrogen atom

Cern scientist produce antihydrogen atom

10:16 AM, 28th January 2014
Physicists from Cern’s Atomic Spectroscopy and Collisions Using Slow Antiprotons said they have produced at least 80 atoms of antihydrogen.

LONDON, UK: Physicists at European Organisation for Nuclear Research (Cern) have succeeded for the first time in producing a beam of antihydrogen atoms, an advance that brings scientists closer to solving the antimatter mystery. Physicists from Cern’s Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) experiment said they have produced at least 80 atoms of antihydrogen.

Primordial antimatter has so far never been observed in the universe, and its absence remains a scientific enigma. Scientist at Cern mixed antielectrons (positrons) and low energy antiprotons produced by the Antiproton Decelerator. The spectra of hydrogen and antihydrogen are predicted to be identical, so any tiny difference between them would immediately open a window to new physics, and could help in solving the antimatter mystery.

It has been a puzzle to scientists why humans, stars and the universe are made of matter, rather than of antimatter. With its single proton accompanied by just one electron, hydrogen is the simplest existing atom, and one of the most precisely investigated and best understood systems in physics. Thus comparisons of hydrogen and antihydrogen atoms constitute one of the best ways to perform highly precise tests of matter/antimatter symmetry.

Matter and antimatter annihilate immediately when they meet, so aside from creating antihydrogen, one of the key challenges for physicists is to keep antiatoms away from ordinary matter. To do so, experiments take advantage of antihydrogen’s magnetic properties (which are similar to hydrogen’s) and use very strong non-uniform magnetic fields to trap antiatoms long enough to study them. However, the strong magnetic field gradients degrade the spectroscopic properties of the (anti)atoms.

To allow for clean high-resolution spectroscopy, the ASACUSA collaboration developed an innovative set-up to transfer antihydrogen atoms to a region where they can be studied in flight, far from the strong magnetic field.

“Antihydrogen atoms having no charge, it was a big challenge to transport them from their trap,” said Yasunori Yamazaki, team leader of the ASACUSA collaboration, RIKEN.

“Our results are very promising for high-precision studies of antihydrogen atoms, particularly the hyperfine structure, one of the two best known spectroscopic properties of hydrogen. Its measurement in antihydrogen will allow the most sensitive test of matter/antimatter symmetry. We are looking forward to restarting this summer with an even more improved set-up,” said Yamazaki.

© PTI News

0 Comments

Login

Your Comments (Up to 2000 characters)
Please respect our community and the integrity of its participants. WOC reserves the right to moderate and approve your comment.

Related News


Taminco, Balchem to build choline chloride facility in Louisiana, US

ALLENTOWN/NEW HAMPTON, US: Taminco Corporation and Balchem Corporation have reached an agreement to build and operate a choline chloride facility in S ...

Read more
Pencil, paper to detect hazardous chemical vapours

EVANSTON, US: Three students from Northwestern University’s McCormick School of Engineering have proven that pencils and regular office paper ca ...

Read more
Eco-friendly catalyst for molecular hydrogen production

STANFORD, US: Researchers have engineered an efficient and environmentally friendly catalyst for the production of molecular hydrogen (H2), a compound ...

Read more
Canpotex signs China potash agreement with Sinofert

SASKATCHEWAN, CANADA: Canpotex Limited has reached agreement with Sinochem Fertilizer Macao Commerical Offshore Ltd (Sinofert) for the supply of 700,0 ...

Read more
BASF, Sinopec JV for isononanol plant in China

SHANGHAI, CHINA/LUDWIGSHAFEN, GERMANY: BASF and China Petroleum & Chemical Corporation (Sinopec) broke ground for the construction of its world-sc ...

Read more
New promising enzyme for generating hydrogen gas

DAVIS, US: A new work from researchers at UC Davis and Stanford University shows how cyanide and carbon monoxide are safely bound to an iron atom to c ...

Read more