Discovering plants' roadblock to specialty oil production

5:55 AM, 22nd January 2021
Biochemist Xiao-Hong Yu's research on specialty fatty acid production in plants got a boost from collaborating with colleagues studying an off-switch that regulates ordinary fatty acid synthesis.

Hundreds of naturally occurring specialty fatty acids (building blocks of oils) have potential for use as raw materials for making lubricants, plastics, pharmaceuticals, and more—if they could be produced at large scale by crop plants. But attempts to put genes for making these specialty building blocks into crops have had the opposite effect: Seeds from plants with genes added to make specialty fatty acids accumulated dramatically less oil. No one knew why.

Now two teams of biochemists working on separate aspects of oil synthesis at the US Department of Energy’s Brookhaven National Laboratory have converged to discover the mechanism behind the oil-production slowdown. As described in the journal Plant Physiology, they crossbred model plants and conducted detailed biochemical-genetic analyses to demonstrate a strategy for reversing the roadblock and ramping up production. The work paves the way for making at least one industrially important specialty fatty acid in plants—and may work for many others.

“Since scientists discovered the genes responsible for making specialty fatty acids several decades ago, we’ve dreamed of putting them into crop plants to make abundant renewable sources of desired fatty acids,” said John Shanklin, chair of Brookhaven Lab’s biology department, who oversaw the project. “But we’ve been stymied from using them because we didn’t know why they dramatically slow fatty acid and oil synthesis. A number of research groups have been trying to figure out why this happens. We have now nailed down the mechanism and opened up the possibility of achieving that dream.”

Two projects converge

This study grew out of two separate projects in Shanklin’s biochemistry lab. One, led by Xiao-Hong Yu and Yuanheng Cai, was focused on the challenges associated with specialized fatty acid production in plants. The other, led by Jantana Keereetaweep, was deciphering details of the biochemical feedback loop plants use to regulate ordinary fatty acid and oil production.

Through that second project, the team recently characterized a mechanism by which plants down-regulate oil synthesis when levels of a plant’s regular (endogenous) fatty acids get too high.

“This system operates like a thermostat,” Shanklin explained. “When heat gets above its set point, the furnace turns off.”

In the case of plant oils, the key machinery that controls production is an enzyme called ACCase. It has four parts, or subunits—you can think of them as gears. As long as endogenous fatty acids are below a certain level, the four “gears” mesh and the machine cranks out fatty acids for oil production. But feeding plants additional endogenous fatty acids triggers a substitution in the machinery. One of the ACCase subunits gets replaced by a version that isn’t functional. “It’s like a gear with no teeth,” Shanklin said. That toothless gear (known as BADC) slows the fatty acid-producing machinery until endogenous fatty acid levels fall.

But as the two teams discussed their projects, they began to wonder if the specialty fatty acids were triggering the same off switch triggered by high levels of ordinary fatty acids.

This idea provided a way for the teams to combine efforts on a new experiment.

Testing the hypothesis

Through earlier studies, Shanklin’s group had created a strain of Arabidopsis (a model plant) that has two of its BADC genes deleted. In these plants, the off switch is disabled and the plants crank out high levels of endogenous fatty acids. They wondered what would happen if the BADC genes were disabled in plants engineered to produce specialty fatty acids.

To find out, Xiao-Hong Yu and Yuanheng Cai designed a strategy to crossbreed the defective off-switch plants with an Arabidopsis strain engineered to produce hydroxy fatty acids—one of the specialty types scientists would like to produce for industrial applications.

“We were fortunate to have two very dedicated students working as interns through Brookhaven’s Office of Educational Programs—Kenneth Wei, who was then at Mount Sinai High School and is now at MIT, and Elen Deng, an undergraduate at Stony Brook University,” Yu said. “They did fantastic work running polymerase chain reaction (PCR) tests—similar to those used to test for COVID-19—to run detailed analyses of more than 600 plants to find those with the desired genetic makeup.”

Keereetaweep then worked with Yu to characterize those plants biochemically, to compare their rates of ACCase activity with those of the two Arabidopsis lines used to make the new genetic combinations.

The end result: Plants that had the combination of defective BADC genes and genes required for making hydroxy fatty acids produced normal levels of oil containing the specialty products. Compared with plants that had normal BADC genes, the new plants exhibited increases in the total amount of fatty acid per seed, the total seed oil content per plant, and the seed yield per plant.

“The BADC-defective plants are blind to the presence of hydroxy fatty acids and the usual response of turning off the ACCase—the oil-making machinery—is gone,” Keereetaweep said.

The results prove that BADC is the mechanism for reducing ACCase activity in both scenarios—the accumulation of excess endogenous fatty acids and the presence of hydroxy fatty acid.

“We are now testing to see if this mechanism is limited to hydroxy fatty acids, or, as we suspect, common to other ‘foreign’ fatty acids that also reduce ACCase activity,” Shanklin said. “If it’s a general mechanism, it opens the possibility of realizing the dream of making additional desired specialty fatty acids in the oil-rich seeds of crop plants,” Shanklin said.

“This is a good example where a fundamental mechanistic understanding of biochemical regulation can be deployed to enable progress towards a viable, sustainable bioeconomy,” Shanklin said. “We can use this approach to make valuable renewable industrial starting materials at low cost in plants from carbon dioxide and sunlight, instead of relying on petrochemicals.”

This study was supported by the DOE Office of Science and the National Science Foundation.

© Chemical Today Magazine 

Know the latest in chemical industry, download the Chemical Today app.

For Android -

For iPhone -



Your Comments (Up to 2000 characters)
Please respect our community and the integrity of its participants. WOC reserves the right to moderate and approve your comment.

Related News

Lab on a Chip test can detect COVID-19 antibodies faster than current methods

A new antibody test being developed by SMU researchers has the potential to detect the presence of antibodies generated in response to COVID-19 faster ...

Read more
AkzoNobel supplies powder coatings for large-scale water pipeline in China

AMSTERDAM, THE NETHERLANDS: A major infrastructure project in China which is using powder coatings on the interior of potable water pipes has specifie ...

Read more
Top 3 trends favoring liquid nitrogen market outlook through 2025

The demand for liquid nitrogen is anticipated to touch new high as food & beverage businesses continue to record rapid growth. Liquid nitrogen or ...

Read more
Focus on natural flavor & fragrance additives to foster mesifurane market

Flavour is among the key drivers for food & beverage purchase decisions. The use of myriad flavoring & fragrance additives such as mesifurane, ...

Read more
Industrial spectrum product application to propel organic peroxides market

Organic peroxides are rapidly emerging as the most preferred chemical components across myriad scientific and manufacturing applications. Used extensi ...

Read more
Sugar alcohol humectants to record considerable demand

A humectant is regarded as a common moisturizing agent found in cosmetic items like shampoos, lotions, and other cosmetic products and food additives. ...

Read more uses cookies to ensure that we give you the best experience on our website. By using this site, you agree to our Privacy Policy and our Terms of Use. X