New novel method trap hazardous gases

New novel method to trap hazardous gases

7:30 AM, 17th December 2016
Dr Kui Tan
Dr Kui Tan, a research scientist at UT Dallas, discovered process to trap potentially harmful emissions within microscopic structures called MOFs.

DALLAS, US: A team of researchers at The University of Texas at Dallas (UT Dallas) has developed a novel method for trapping potentially harmful gases within microscopic organometallic structures. 

These metal organic frameworks (MOFs), are made of different building blocks composed of metal ion centres and organic linker molecules. Together they form a honeycomb-like structure that can trap gases within each comb or pore. 

The tiny nano-scale structures also have the potential to trap various emissions from things as immense as coal factories and as small as cars and trucks. However, there are some molecules that are simply too weakly adsorbed to remain contained within the MOF scaffolding. Adsorption describes how an extremely thin layer of molecules (as of gases, solutes or liquids) can cling to the surfaces of solid bodies or liquids. 

“These structures have the ability to store gases, but some gases are too weakly bound and cannot be trapped for any substantial length of time,” said Dr Kui Tan, a research scientist in the Department of Materials Science and Engineering at UT Dallas and lead author of the study

The study is published online in the journal Nature Communications.  

After studying this problem, Tan decided to try to introduce a molecule that can cap the outer surface of each MOF crystal in the same way bees seal their honeycombs with wax to keep the honey from spilling out. 

In this case, he introduced vapours of a molecule called ethylenediamine (EDA), that created a monolayer, effectively sealing the MOF “honeycomb” and trapping gases such as carbon dioxide, sulphur dioxide and nitric oxide within. 

This monolayer is less than 1 nanometer in thickness or less than half the size of a single strand of DNA. 

To quantify how much gas was trapped and remained in the EDA-capped MOF structures, Tan and his team used time-resolved, in-situ infrared spectroscopy, testing the efficiency of this molecular “cork” to trap weakly adsorbed gases. 

The presence of the gas molecules adsorbed in the MOF was displayed on a nearby computer screen as inverted peaks, which revealed that EDA vapour was able to effectively retain the greenhouse gas carbon dioxide for up to a day. 

“Potential applications of this finding could include storage and release of hydrogen or natural gas to run your car, or in industrial uses where the frameworks could trap and separate dangerous gases to keep them from entering the atmosphere,” Tan said. 

As an added discovery, Tan found that a mild exposure to water vapour would disrupt the monolayer, penetrate the framework and fully release the entrapped vapours at room temperature. Such selectivity of the EDA membrane opens up new options for managing gas emissions, he said.

“The idea of using EDA as a cap came from Kui who proceeded to do an enormous amount of work to demonstrate this new concept, with critical theoretical input from our collaborators at Wake Forest University,” said Dr Yves Chabal, head of the materials science and engineering department in the Erik Jonsson School of Engineering and Computer Science and senior author of the paper.  

Funding for this work, which involved a close collaboration between Rutgers University, Wake Forest and UT Dallas, was provided by the Department of Energy.

© UT Dallas News 



Your Comments (Up to 2000 characters)
Please respect our community and the integrity of its participants. WOC reserves the right to moderate and approve your comment.

Related News

Wacker appoints new president for its polysilicon division

MUNICH, GERMANY: Wacker Chemie AG has appointed Dr Tobias Brandis (45) as the president of the Wacker Polysilicon division, effective 1 January 2017. ...

Read more
Enterprise restarts Pascagoula gas processing plant after repairs

HOUSTON, US: Enterprise Products Partners LP said that it has completed the repairs necessary to allow operations to resume at its natural gas process ...

Read more
Investments from across the globe-exploring opportunities

By Debarati Das The Department of Chemicals and Petrochemicals of the Union Ministry of Chemicals and Fertilisers and the Federation of Indian Chambe ...

Read more
BASF makes changes in management

LUDWIGSHAFEN, GERMANY: BASF SE said that it has made personnel changes in the organisational and management team. The changes are as follows: On 1 Ap ...

Read more
Solvay strengthens scientific partnership with CNRS

BRUSSELS, BELGIUM /PARIS, FRANCE: Solvay SA and the CNRS (France’s National Centre for Scientific Research) have renewed their framework ag ...

Read more
Gevo stockholders approve reverse split of outstanding shares

ENGLEWOOD, US: Gevo Inc stockholders has approved an amendment to its Amended and Restated Certificate of Incorporation to effect a reverse stock spli ...

Read more uses cookies to ensure that we give you the best experience on our website. By using this site, you agree to our Privacy Policy and our Terms of Use. X