New strategy helps practically use solid oxide fuel cells

New strategy helps to practically use solid oxide fuel cells

6:30 AM, 28th October 2015
New strategy helps to practically use solid oxide fuel cells

SENDAI, JAPAN: Solid oxide fuel cells (SOFC), recently used as a power source for households in Japan, have several drawbacks such as high-cost, material degradation and long start-up time derived from high operating temperatures up to 750°C.

Lowering the operating temperature to an "intermediate" range of 300-500°C would, in effect, enable the use of low-cost materials and allow for a quicker start-up which, in turn, could lead to wider commercial use and application to a mobile power source.

A team of researchers at Tohoku University in Japan has developed a new idea to improve proton conductivity in rare-earth doped BaZrO3 perovskite-type proton conductors. Rare-earth doped BaZrO3 is a promising candidate material for intermediate temperature SOFCs. However, further improvement of proton conductivity is required for practical use.

In the journal Chemistry of Materials, the researchers suggest a strategy to improve the mobility of protons by controlling oxygen vacancies as well as protons. Protons are known to be "trapped" around a rare-earth element in the doped BaZrO3 which lowers the proton conductivity. This proton trapping is originated from the electrostatic attractive interaction between a negatively charged rare-earth element and a positively charged proton.

However, when the pairing of a rare-earth element and an oxygen vacancy is created in the material, this pair possesses a positive net charge and therefore, inhibits the trapping of protons due to the electrostatic repulsive interaction.

In developing this idea, the team clarified the distribution of protons and oxygen vacancies in Sc-doped BaZrO3 by combining nuclear magnetic resonance spectroscopy and thermogravimetric analysis. When a certain amount of oxygen vacancies (4 mol%) exists in the material, the proton concentration around Zr is higher than that around the rare-earth element which indicates protons with less influence from the trapping effects of the rare-earth element

"Because the attractive interaction between the rare-earth element and protons causes the proton trapping, introducing another defect having positive charges - that is to say, oxygen vacancy - appears to liberate the trapped protons," said Hitoshi Takamura, who led the research at Tohoku University. He and his colleagues have clarified that the interaction between the rare-earth element and oxygen vacancy does prevent the proton trapping.

"This idea can be applied not only to the development of ionic conductors but also other materials, such as fluorescent and catalyst materials, since the interaction of defects plays an important role in these materials," said Takamura. "If the distribution of defects becomes controllable, we can design a variety of functional materials. That is our goal for this research."

 © Tohoku University News

0 Comments

Login

Your Comments (Up to 2000 characters)
Please respect our community and the integrity of its participants. WOC reserves the right to moderate and approve your comment.

Related News


Cobalt atoms on graphene a powerful combo

HOUSTON, US: Graphene doped with nitrogen and augmented with cobalt atoms has proven to be an effective, durable catalyst for the production of hydrog ...

Read more
Synthetic batteries for the energy revolution

JENA, GERMANY: Sun and wind are important sources of renewable energy, but they suffer from natural fluctuations. In stormy weather or bright sunshine ...

Read more
Pirelli, Rosneft, Synthos advance Nakhodka synthetic rubber project

NAKHODKA, RUSSIA: Pirelli, Rosneft and Synthos signed a memorandum of understanding (MOU) regarding the approval of the results of the feasibility stu ...

Read more
Technip bags Libra’s flexible pipes supply contract in Brazil

PARIS, FRANCE: Technip SA said it was awarded a €100 to €250 million substantial contract from Libra Oil & Gas BV, a consortium led by P ...

Read more
Green Plains acquires ethanol plant in Hopewell

OMAHA, US: Green Plains Inc said it has acquired an ethanol production facility located in Hopewell, US. Operating at full capacity, the facility&rsqu ...

Read more
Air Products to build world-scale steam methane reformer in US

BAYTOWN, TEXAS: Air Products Inc said that it will invest $350-$400 million to build, own and operate a world-scale steam methane reformer (SMR) in Ba ...

Read more