Study could lead new class materials making LEDs

Study could lead to a new class of materials for making LEDs

9:36 AM, 27th July 2015
Study could lead to a new class of materials for making LEDs
A new study led by professor of chemistry and biochemistry, Xiangfeng Duan, from California NanoSystems Institute, UCLA is the first demonstration of electroluminescence from multilayer molybdenum disulfide or MoS2, a discovery that could lead to a new class of materials for making LEDs.

LOS ANGELES, US: Over the last decade, advances in the technology of light-emitting diodes, or LEDs, have helped to improve the performance of devices ranging from television and computer screens to flashlights. As the uses for LEDs expand, scientists continue to look for ways to increase their efficiency while simplifying how they are manufactured.

A new study by researchers from the California NanoSystems Institute at UCLA is the first demonstration of electroluminescence from multilayer molybdenum disulfide or MoS2, a discovery that could lead to a new class of materials for making LEDs. The study, led by Xiangfeng Duan, professor of chemistry and biochemistry, was published in the journal Nature Communications.

In its single-layer form, molybdenum disulfide is optically active, meaning that it emits light when electric current is run through it or when it is shot with a nondestructive laser. Multilayer molybdenum disulfide, by contrast, is easier and less expensive to produce, but it is not normally luminescent. In the new study, Duan and first author Dehui Li, a postdoctoral scholar in Duan’s lab, created the first multilayer molybdenum disulfide device that shows strong luminescence when electrical current is passed through it.

“We were trying to make a vertically stacked light-emitting device based on monolayer MoS2, but it was difficult to get the efficiency as high as we wanted,” Duan said. “On the other hand, it was rather surprising for us to discover that similar vertical devices made of multilayer MoS2 somehow showed very strong electroluminescence, which was completely unexpected since the multilayer MoS2 is generally believed to be optically inactive. So we followed this new lead to investigate the underlying mechanism and the potential of multilayer MoS2 in light-emitting devices.”

Duan and his team used a technique called electric field-induced enhancement, which relocates the electrons from a dark state to a luminescent state, thereby increasing the material’s ability to convert electrons into light particles, or photons. With this technique, the multilayer MoS2 semiconductors are at least as efficient as monolayer ones.

Duan’s team is currently moving forward to apply this approach to similar materials, including tungsten diselenide, molybdenum diselenide and tungsten disulphide, with the goal of helping to create a new generation of light-emitting devices from two-dimensional layered materials, which are less expensive and easier to use in manufacturing.

© UCLA News

0 Comments

Login

Your Comments (Up to 2000 characters)
Please respect our community and the integrity of its participants. WOC reserves the right to moderate and approve your comment.

Related News


Scientists hijack light-loving bacteria to make high-value products

RICHLAND, US: Scientists have directed a common bacterium to produce more of a valuable fatty acid, lauric acid, than it typically does. The achieveme ...

Read more
Towards cheaper water treatment

CAMBRIDGE, US: Hydraulic fracturing, or “fracking,” produces a lot of wastewater. Drilling one well requires millions of gallons of water ...

Read more
Young scientist finds magnetic material unnecessary for spin current

ARGONNE, US: It doesn’t happen often that a young scientist makes a significant and unexpected discovery, but postdoctoral researcher Stephen Wu ...

Read more
Could stronger, tougher paper replace metal?

COLLEGE PARK, US: Researchers at the University of Maryland recently discovered that paper made of cellulose fibre is tougher and stronger the smaller ...

Read more
CB&I awarded oil sands maintenance contract in Canada.

THE WOODLANDS, US: Chicago Bridge & Iron Company NV (CB&I) said it has been awarded a contract for approximately $60 million by a major energy ...

Read more
‘Fat, chemicals – and hepatitis’: why Britain has stopped eating sausages

LONDON, UK: Sausages have been a part of Britain’s food and has been around since 5,000 years. But nowadays, the British consumer has stopped bu ...

Read more
www.worldofchemicals.com uses cookies to ensure that we give you the best experience on our website. By using this site, you agree to our Privacy Policy and our Terms of Use. X